Source code for docarray.array.mixins.embed

import warnings
from typing import TYPE_CHECKING, Callable, Optional, Any, Mapping

if TYPE_CHECKING:  # pragma: no cover
    from docarray.typing import T, AnyDNN
    from docarray import DocumentArray

    CollateFnType = Callable[
        [DocumentArray],
        Any,
    ]  #: The type of collate function


[docs]class EmbedMixin: """Helper functions for embedding with a model"""
[docs] def embed( self: 'T', embed_model: 'AnyDNN', device: str = 'cpu', batch_size: int = 256, to_numpy: bool = False, collate_fn: Optional['CollateFnType'] = None, ) -> 'T': """Fill :attr:`.embedding` of Documents inplace by using `embed_model` For the evaluation of a model, one can directly use the :meth:`~docarray.array.mixins.evaluation.EvaluationMixin.embed_and_evaluate` function. :param embed_model: The embedding model written in Keras/Pytorch/Paddle :param device: The computational device for `embed_model`, can be either `cpu` or `cuda`. :param batch_size: Number of Documents in a batch for embedding :param to_numpy: If to store embeddings back to Document in ``numpy.ndarray`` or original framework format. :param collate_fn: create a mini-batch of Input(s) from the given `DocumentArray`. Default built-in collate_fn is to use the `tensors` of the documents. :return: itself after modified. """ if collate_fn is None: def default_collate_fn(da: 'DocumentArray'): return da.tensors collate_fn = default_collate_fn fm = get_framework(embed_model) getattr(self, f'_set_embeddings_{fm}')( embed_model, collate_fn, device, batch_size, to_numpy ) return self
def _set_embeddings_keras( self: 'T', embed_model: 'AnyDNN', collate_fn: 'CollateFnType', device: str = 'cpu', batch_size: int = 256, to_numpy: bool = False, ): import tensorflow as tf device = tf.device('/GPU:0') if device == 'cuda' else tf.device('/CPU:0') with device: for b_ids in self.batch_ids(batch_size): batch_inputs = collate_fn(self[b_ids]) if isinstance(batch_inputs, Mapping): r = embed_model(**batch_inputs, training=False) else: r = embed_model(batch_inputs, training=False) if not isinstance(r, tf.Tensor): # NOTE: Transformers has own output class. from transformers.modeling_outputs import ModelOutput r = r.pooler_output # type: ModelOutput self[b_ids, 'embedding'] = r.numpy() if to_numpy else r def _set_embeddings_torch( self: 'T', embed_model: 'AnyDNN', collate_fn: 'CollateFnType', device: str = 'cpu', batch_size: int = 256, to_numpy: bool = False, ): import torch embed_model = embed_model.to(device) is_training_before = embed_model.training embed_model.eval() with torch.inference_mode(): for b_ids in self.batch_ids(batch_size): batch_inputs = collate_fn(self[b_ids]) if isinstance(batch_inputs, Mapping): for k, v in batch_inputs.items(): batch_inputs[k] = torch.tensor(v, device=device) r = embed_model(**batch_inputs) else: batch_inputs = torch.tensor(batch_inputs, device=device) r = embed_model(batch_inputs) if isinstance(r, torch.Tensor): r = r.cpu().detach() else: # NOTE: Transformers has own output class. from transformers.modeling_outputs import ModelOutput r = r.pooler_output.cpu().detach() # type: ModelOutput self[b_ids, 'embedding'] = r.numpy() if to_numpy else r if is_training_before: embed_model.train() def _set_embeddings_paddle( self: 'T', embed_model, collate_fn: 'CollateFnType', device: str = 'cpu', batch_size: int = 256, to_numpy: bool = False, ): import paddle is_training_before = embed_model.training embed_model.to(device=device) embed_model.eval() for b_ids in self.batch_ids(batch_size): batch_inputs = collate_fn(self[b_ids]) if isinstance(batch_inputs, Mapping): for k, v in batch_inputs.items(): batch_inputs[k] = paddle.to_tensor(v, place=device) r = embed_model(**batch_inputs) else: batch_inputs = paddle.to_tensor(batch_inputs, place=device) r = embed_model(batch_inputs) self[b_ids, 'embedding'] = r.numpy() if to_numpy else r if is_training_before: embed_model.train() def _set_embeddings_onnx( self: 'T', embed_model, collate_fn: 'CollateFnType', device: str = 'cpu', batch_size: int = 256, *args, **kwargs, ): # embed_model is always an onnx.InferenceSession if device != 'cpu': import onnxruntime as ort support_device = ort.get_device() if device.lower().strip() != support_device.lower().strip(): warnings.warn( f'Your installed `onnxruntime` supports `{support_device}`, but you give {device}' ) for b_ids in self.batch_ids(batch_size): batch_inputs = collate_fn(self[b_ids]) if not isinstance(batch_inputs, Mapping): batch_inputs = {embed_model.get_inputs()[0].name: batch_inputs} self[b_ids, 'embedding'] = embed_model.run(None, batch_inputs)[0]
[docs]def get_framework(dnn_model) -> str: """Return the framework that powers a DNN model. .. note:: This is not a solid implementation. It is based on ``__module__`` name, the key idea is to tell ``dnn_model`` without actually importing the framework. :param dnn_model: a DNN model :return: `keras`, `torch`, `paddle` or ValueError """ import importlib.util if importlib.util.find_spec('torch'): import torch if isinstance(dnn_model, torch.nn.Module): return 'torch' if importlib.util.find_spec('paddle'): import paddle if isinstance(dnn_model, paddle.nn.Layer): return 'paddle' if importlib.util.find_spec('tensorflow'): from tensorflow import keras if isinstance(dnn_model, keras.layers.Layer): return 'keras' if importlib.util.find_spec('onnx'): from onnxruntime import InferenceSession if isinstance(dnn_model, InferenceSession): return 'onnx' raise ValueError(f'can not determine the backend of {dnn_model!r}')