Source code for docarray.array.qdrant

from docarray.array.document import DocumentArray
from docarray.array.storage.qdrant import StorageMixins, QdrantConfig

__all__ = ['DocumentArrayQdrant', 'QdrantConfig']


[docs]class DocumentArrayQdrant(StorageMixins, DocumentArray): """ DocumentArray that stores Documents in a `Qdrant <https://qdrant.tech/>`_ vector search engine. .. note:: This DocumentArray requires `qdrant-client`. You can install it via `pip install "docarray[qdrant]"`. To use Qdrant as storage backend, a Qdrant service needs to be running on your machine. With this implementation, :meth:`match` and :meth:`find` perform fast (approximate) vector search. Additionally, search with filters is supported. Example usage: .. code-block:: python from docarray import DocumentArray # connect to running Qdrant service with default configuration (address: http://localhost:6333) da = DocumentArray(storage='qdrant', config={'n_dim': 10}) # connect to a previously persisted DocumentArrayQdrant by specifying collection_name, host, and port da = DocumentArray( storage='qdrant', config={ 'collection_name': 'persisted', 'host': 'localhost', 'port': '6333', 'n_dim': 10, }, ) .. seealso:: For further details, see our :ref:`user guide <qdrant>`. """ def __new__(cls, *args, **kwargs): """``__new__`` method for :class:`DocumentArrayQdrant` :param *args: list of args to instantiate the object :param **kwargs: dict of args to instantiate the object :return: the instantiated :class:`DocumentArrayQdrant` object """ return super().__new__(cls)