Source code for docarray.array.weaviate
from docarray.array.document import DocumentArray
from docarray.array.storage.weaviate import StorageMixins, WeaviateConfig
__all__ = ['DocumentArrayWeaviate', 'WeaviateConfig']
[docs]class DocumentArrayWeaviate(StorageMixins, DocumentArray):
"""
DocumentArray that stores Documents in a `Weaviate <https://weaviate.io/>`_ vector search engine.
.. note::
This DocumentArray requires `weaviate-client`. You can install it via `pip install "docarray[weaviate]"`.
To use Weaviate as storage backend, a Weaviate service needs to be running on your machine.
With this implementation, :meth:`match` and :meth:`find` perform fast (approximate) vector search.
Additionally, search with filters is supported.
Example usage:
.. code-block:: python
from docarray import DocumentArray
# connect to running Weaviate service with default configuration (address: http://localhost:8080)
da = DocumentArray(storage='weaviate')
# connect to a previously persisted DocumentArrayWeaviate by specifying name, host, and port
da = DocumentArray(
storage='weaviate', config={'name': 'Persisted', 'host': 'localhost', 'port': 1234}
)
.. seealso::
For further details, see our :ref:`user guide <weaviate>`.
"""
def __new__(cls, *args, **kwargs):
"""``__new__`` method for :class:`DocumentArrayWeaviate`
:param *args: list of args to instantiate the object
:param **kwargs: dict of args to instantiate the object
:return: the instantiated :class:`DocumentArrayWeaviate` object
"""
return super().__new__(cls)