Source code for docarray.math.distance.paddle

from typing import TYPE_CHECKING

import paddle

if TYPE_CHECKING:  # pragma: no cover
    from paddle import tensor
    import numpy


[docs]def cosine( x_mat: 'tensor', y_mat: 'tensor', eps: float = 1e-7, device: str = 'cpu' ) -> 'numpy.ndarray': """Cosine distance between each row in x_mat and each row in y_mat. :param x_mat: np.ndarray with ndim=2 :param y_mat: np.ndarray with ndim=2 :param eps: a small jitter to avoid divde by zero :param device: the computational device for `embed_model`, can be either `cpu` or `cuda`. :return: np.ndarray with ndim=2 """ paddle.set_device(device) a_n, b_n = x_mat.norm(axis=1)[:, None], y_mat.norm(axis=1)[:, None] a_norm = x_mat / paddle.clip(a_n, min=eps) b_norm = y_mat / paddle.clip(b_n, min=eps) sim_mt = 1 - paddle.mm(a_norm, b_norm.transpose(perm=[1, 0])) return sim_mt.numpy()
[docs]def sqeuclidean( x_mat: 'tensor', y_mat: 'tensor', device: str = 'cpu' ) -> 'numpy.ndarray': """Squared euclidean distance between each row in x_mat and each row in y_mat. :param x_mat: paddle array with ndim=2 :param y_mat: paddle array with ndim=2 :param device: the computational device for `embed_model`, can be either `cpu` or `cuda`. :return: np.ndarray with ndim=2 """ paddle.set_device(device) return ( paddle.sum(y_mat**2, axis=1) + paddle.sum(x_mat**2, axis=1)[:, None] - 2 * paddle.mm(x_mat, y_mat.transpose(perm=[1, 0])) ).numpy()
[docs]def euclidean(x_mat: 'tensor', y_mat: 'tensor', device: str = 'cpu') -> 'numpy.ndarray': """Euclidean distance between each row in x_mat and each row in y_mat. :param x_mat: paddle array with ndim=2 :param y_mat: paddle array with ndim=2 :param device: the computational device for `embed_model`, can be either `cpu` or `cuda`. :return: np.ndarray with ndim=2 """ paddle.set_device(device) return paddle.sqrt( paddle.sum(y_mat**2, axis=1) + paddle.sum(x_mat**2, axis=1)[:, None] - 2 * paddle.mm(x_mat, y_mat.transpose(perm=[1, 0])) ).numpy()