Source code for docarray.math.distance.torch
from typing import TYPE_CHECKING
import torch
if TYPE_CHECKING: # pragma: no cover
from torch import tensor
import numpy
[docs]def cosine(
x_mat: 'tensor', y_mat: 'tensor', eps: float = 1e-7, device: str = 'cpu'
) -> 'numpy.ndarray':
"""Cosine distance between each row in x_mat and each row in y_mat.
:param x_mat: torch with ndim=2
:param y_mat: torch with ndim=2
:param eps: a small jitter to avoid divde by zero
:param device: the computational device for `embed_model`, can be either `cpu` or `cuda`.
:return: np.ndarray with ndim=2
"""
x_mat = x_mat.to(device)
y_mat = y_mat.to(device)
a_n, b_n = x_mat.norm(dim=1)[:, None], y_mat.norm(dim=1)[:, None]
a_norm = x_mat / torch.clamp(a_n, min=eps)
b_norm = y_mat / torch.clamp(b_n, min=eps)
sim_mt = 1 - torch.mm(a_norm, b_norm.transpose(0, 1))
return sim_mt.cpu().detach().numpy()
[docs]def euclidean(x_mat: 'tensor', y_mat: 'tensor', device: str = 'cpu') -> 'numpy.ndarray':
"""Euclidean distance between each row in x_mat and each row in y_mat.
:param x_mat: torch array with ndim=2
:param y_mat: torch array with ndim=2
:param device: the computational device for `embed_model`, can be either `cpu` or `cuda`.
:return: np.ndarray with ndim=2
"""
x_mat = x_mat.to(device)
y_mat = y_mat.to(device)
return torch.cdist(x_mat, y_mat).cpu().detach().numpy()
[docs]def sqeuclidean(
x_mat: 'tensor', y_mat: 'tensor', device: str = 'cpu'
) -> 'numpy.ndarray':
"""Squared euclidean distance between each row in x_mat and each row in y_mat.
:param x_mat: torch array with ndim=2
:param y_mat: torch array with ndim=2
:param device: the computational device for `embed_model`, can be either `cpu` or `cuda`.
:return: np.ndarray with ndim=2
"""
x_mat = x_mat.to(device)
y_mat = y_mat.to(device)
return (torch.cdist(x_mat, y_mat) ** 2).cpu().detach().numpy()