docarray.math.distance.paddle module#

docarray.math.distance.paddle.cosine(x_mat, y_mat, eps=1e-07, device='cpu')[source]#

Cosine distance between each row in x_mat and each row in y_mat.

Parameters:
  • x_mat – np.ndarray with ndim=2

  • y_mat – np.ndarray with ndim=2

  • eps – a small jitter to avoid divde by zero

  • device – the computational device for embed_model, can be either cpu or cuda.

Returns:

np.ndarray with ndim=2

docarray.math.distance.paddle.sqeuclidean(x_mat, y_mat, device='cpu')[source]#

Squared euclidean distance between each row in x_mat and each row in y_mat.

Parameters:
  • x_mat – paddle array with ndim=2

  • y_mat – paddle array with ndim=2

  • device – the computational device for embed_model, can be either cpu or cuda.

Returns:

np.ndarray with ndim=2

docarray.math.distance.paddle.euclidean(x_mat, y_mat, device='cpu')[source]#

Euclidean distance between each row in x_mat and each row in y_mat.

Parameters:
  • x_mat – paddle array with ndim=2

  • y_mat – paddle array with ndim=2

  • device – the computational device for embed_model, can be either cpu or cuda.

Returns:

np.ndarray with ndim=2