Visualization#
If you have an image Document (with image data in .uri
/.tensor
), you can visualize it with display()
.
To better see a Document’s nested structure, you can use summary()
.
import numpy as np
from docarray import Document
d0 = Document(id='🐲', embedding=np.array([0, 0]))
d1 = Document(id='🐦', embedding=np.array([1, 0]))
d2 = Document(id='🐢', embedding=np.array([0, 1]))
d3 = Document(id='🐯', embedding=np.array([1, 1]))
d0.chunks.append(d1)
d0.chunks[0].chunks.append(d2)
d0.matches.append(d3)
d0.summary()
<Document ('id', 'embedding', 'chunks', 'matches') at 🐲>
└─ matches
└─ <Document ('id', 'adjacency', 'embedding') at 🐯>
└─ chunks
└─ <Document ('id', 'parent_id', 'granularity', 'embedding', 'chunks') at 🐦>
└─ chunks
└─ <Document ('id', 'parent_id', 'granularity', 'embedding') at 🐢>
When using Notebook/Colab, this is auto-rendered: