Access Documents#
This is probably my favorite chapter so far. If you’ve come this far, you may be thinking: Okay, so you’ve re-implemented the Python List and called it DocumentArray. What’s the big deal?
If it really were just a list
and you can only access elements via [1]
, [-1]
, [1:3]
, then you’d be right. However, DocumentArray offers much more than simple indexing. It lets you fully exploit the rich and nested data structure of Documents in an easy and efficient way.
The table below summarizes all the indexing routines that DocumentArray supports. You can use them to get, set, and delete items in a DocumentArray.
Indexing routine |
Example |
Return |
---|---|---|
by integer |
|
Document |
by integers |
|
DocumentArray |
by slice |
|
DocumentArray |
by |
|
Document |
by |
|
DocumentArray |
by boolean mask |
|
DocumentArray |
by Ellipsis |
|
DocumentArray |
by nested structure |
|
DocumentArray |
|
DocumentArray |
Sounds exciting? Let’s continue then.
Tip
Most of the examples below only show getting Documents for the sake of clarity. Note that you can always use the same syntax to get/set/delete Documents. For example:
da = DocumentArray(...)
da[index]
da[index] = Document(...)
da[index] = DocumentArray(...)
del da[index]
Basic indexing#
Basic indexing such as by integer offset or slices are so common that we think they can go without saying. You can just use them like you would in a Python List:
from docarray import DocumentArray
da = DocumentArray.empty(100)
da[0]
da[-1]
da[1:5]
da[1:100:10]
<Document ('id',) at 834f14666e6511ec8e331e008a366d49>
<Document ('id',) at 834f32846e6511ec8e331e008a366d49>
<DocumentArray (length=4) at 4883468432>
<DocumentArray (length=10) at 4883468432>
Index by Document id
#
A more interesting use case is selecting Documents by their id
s:
from docarray import DocumentArray
da = DocumentArray.empty(100)
print(da[0].id, da[1].id)
7e27fa246e6611ec9a441e008a366d49
7e27fb826e6611ec9a441e008a366d49
print(da['7e27fa246e6611ec9a441e008a366d49'])
print(da['7e27fa246e6611ec9a441e008a366d49', '7e27fb826e6611ec9a441e008a366d49'])
<Document ('id',) at 99851c7a6e6611ecba351e008a366d49>
<DocumentArray (length=2) at 4874066256>
No need to worry about efficiency here: It’s O(1)
.
Based on the same technique, you can check if a Document is inside a DocumentArray using Python’s in
syntax:
from docarray import DocumentArray, Document
da = DocumentArray.empty(10)
da[0] in da
Document() in da
True
False
Index by boolean mask#
Using a boolean mask to select Documents is useful for updating or filtering certain Documents:
from docarray import DocumentArray
da = DocumentArray.empty(100)
mask = [True, False] * 50
del da[mask]
print(da)
<DocumentArray (length=50) at 4513619088>
Note that if the boolean mask’s length is smaller than the DocumentArray’s length, the remaining part is padded to False
.
Index by nested structure#
From an earlier chapter, we already know Documents can be nested. DocumentArray provides makes it easy to traverse over the nested structure and select Documents:
da['@path1,path2,path3']
The path-string must start with
@
.Multiple paths are separated by commas
,
.A path represents the route from the top-level Documents to the destination. Use
c
to select chunks,cc
to select chunks of chunks,m
to select matches,mc
to select chunks of matches,r
to select top-level Documents.A path can only go deeper, not shallower. You can use commas
,
to start a new path from the very top-level.Optionally, specifying a slice or offset at each level (for example,
r[-1]m[:3]
) selects the first 3 matches of the last root document.
See also
If you’re working with a DocumentArray that was created through DocArray’s dataclass API, you can also directly access sub-documents by specifying the modality name that you assigend to them.
To see how to do that, see here.
Let’s practice. First construct a DocumentArray with nested Documents:
from docarray import DocumentArray
da = DocumentArray().empty(3)
for d in da:
d.chunks = DocumentArray.empty(2)
d.matches = DocumentArray.empty(2)
da.summary()
Documents Summary
Length 3
Homogenous Documents True
Has nested Documents in ('chunks', 'matches')
Common Attributes ('id', 'chunks', 'matches')
Attributes Summary
Attribute Data type #Unique values Has empty value
────────────────────────────────────────────────────────────────
chunks ('ChunkArray',) 3 False
id ('str',) 3 False
matches ('MatchArray',) 3 False
This simple DocumentArray contains three Documents, each of which contains two matches and two chunks. Let’s plot one of them.
<Document ('id', 'chunks', 'matches') at 2f94c1426ee511ecbb491e008a366d49>
└─ matches
├─ <Document ('id', 'adjacency') at 2f94cd9a6ee511ecbb491e008a366d49>
└─ <Document ('id', 'adjacency') at 2f94cdfe6ee511ecbb491e008a366d49>
└─ chunks
├─ <Document ('id', 'parent_id', 'granularity') at 2f94c4086ee511ecbb491e008a366d49>
└─ <Document ('id', 'parent_id', 'granularity') at 2f94c46c6ee511ecbb491e008a366d49>
That’s still too much information, let’s minimize it:
Now let’s use the red dot to depict our intended selection. Here’s where we use the path-syntax:
print(da['@m'])
print(da['@c'])
print(da['@c,m'])
print(da['@c,m,r'])
<DocumentArray (length=6) at 4912623312>
<DocumentArray (length=6) at 4905929552>
<DocumentArray (length=12) at 4913359824>
<DocumentArray (length=15) at 4912623312>
Let’s now consider a deeper nested structure and use the path syntax to select Documents:
Last but not the least, you can use integer, or integer slice to restrict the selection:
This is useful to get the top matches of all matches from all Documents:
da['@m[:5]']
You can add spaces in the path-string for better readability.
Index by flatten#
What if I just want a flat DocumentArray without all nested structure? Can I select all Documents regardless of their nested structure?
Yes! Simply use the ellipsis literal as the selector da[...]
:
from docarray import DocumentArray
da = DocumentArray().empty(3)
for d in da:
d.chunks = DocumentArray.empty(2)
d.matches = DocumentArray.empty(2)
da[...].summary()
Documents Summary
Length 15
Homogenous Documents False
6 Documents have attributes ('id', 'parent_id', 'granularity')
6 Documents have attributes ('id', 'adjacency')
3 Documents have one attribute ('id',)
Attributes Summary
Attribute Data type #Unique values Has empty value
────────────────────────────────────────────────────────────
adjacency ('int',) 2 False
granularity ('int',) 2 False
id ('str',) 15 False
parent_id ('str',) 4 False
Note that there are no chunks
or matches
in any of the Documents from da[...]
anymore. They have all been flattened.
Documents in da[...]
are in the chunks-and-depth-first order, i.e depth-first traversing to all chunks and then to all matches.
Other handy helpers#
Batching#
Tip
To batch and process a DocumentArray in parallel in a non-blocking way, use map_batch()
and refer to Use map_batch() to overlap CPU & GPU computation.
You can batch a large DocumentArray into smaller ones with batch()
. This is useful when a DocumentArray is too big to process at once.
from docarray import DocumentArray
da = DocumentArray.empty(1000)
for b_da in da.batch(batch_size=256):
print(b_da)
<DocumentArray (length=256) at 4887691536>
<DocumentArray (length=256) at 4887691600>
<DocumentArray (length=256) at 4887691408>
<DocumentArray (length=232) at 4887691536>
Sampling#
from docarray import DocumentArray
da = DocumentArray.empty(1000).sample(10)
<DocumentArray (length=10) at 4887691536>
Shuffling#
To shuffle a DocumentArray in-place:
from docarray import DocumentArray
da = DocumentArray.empty(1000)
da.shuffle()
What’s next?#
Now you know how to select Documents from DocumentArray, next you’ll learn how to select attributes from DocumentArray. Spoiler alert: it follows the same syntax.